Mind the (anion) gap! – Allt du behöver veta om metabol acidos med högt anjongap

I det här inlägget sonderar Mikael vidare bland de metabola syra-basrubbningarna och reder ut varför, när och hur anjongapet kan användas vid  bedömning av metabol acidos. Håll även utkik här på blodgas.se efter kommande inlägg om delta delta-ratio och tolkningsschema för metabol acidos med högt anjongap som snart publiceras här. Vi är som vanligt intresserade av återkoppling så kommentera gärna inlägget nedan eller maila oss dina synpunkter!


Sammanfattning

Varför beräkna anjongap? Identifiera orsaker till oklar metabol acidos.
När beräkna anjongap?  Vid metabol acidos utan tydlig förklaring, förgiftningstillstånd, konfusion eller oklar medvetandepåverkan
Hur beräkna anjongap? AG beräknas enligt AG = Na – (Cl + HCO3) och normalintervallet anges ofta till 3-10 mEq/L (medelvärde hos friska omkring 6-9 mEq/L).
Tolkning av högt anjongap Vanliga orsaker till metabol acidos med högt anjongap är ketoacidos, uremi, Laktacidos, Tox (KULT) och orsaken ofta tydlig vid anamnes, undersökning och provtagning. 
Vid fördjupad bedömning kan minnesramsan GOLD MARK användas. Den representerar Glykoler, 5-Oxoproline, L-laktat, D-laktat, Metanol,
Aspirin, Renal failure, Ketoacidos. 

Fallgropar
– Lågt S-Albumin – justera ned normalintervallet för anjongapet enligt AG= Beräknat anjongap – (0,25 x (42 – [S-albumin /g/L])). 
– Anjongapet är ett beräknat värde och olika analysmetoder och formler för beräkning påverkar normalintervallet som därför kan skilja sig mellan olika laboratorier och analyssystem; ta reda på vad som gäller lokalt där
du jobbar. 

Figur 1. Normalt och förhöjt anjongap

Anjongap-PDF

 


Definition

Serumanjongapet är skillnaden mellan majoriteten av de positivt laddade jonerna i plasma (katjonerna) och majoriteten av de negativt laddade jonerna (anjonerna) och beräknas enligt formeln Anjongapet (AG) = Na+ – (Cl- + HCO3-). Vid tillstånd som påverkar balansen av anjoner och katjoner i serum kommer anjongapet att påverkas, eftersom principen om elektroneutralitet är överordnad processerna som upprätthåller ett normalt pH. Det innebär att när det ansamlas en syra i serum (negativ laddad syra som B-hydroxysmörsyra som vid ketoacidos) kommer anjongpapet att öka genom att bikarbonat minskar [2-5] 

Vilka komponenter ingår i anjongapet?

De positiva jonerna i serum utgörs ffa av Na, K, Ca, Mg, och positivt laddade proteiner där den viktigaste är S-Albumin. De negativt laddade jonerna utgörs av Cl, HCO3, negativt laddade proteiner, SO4 och fosfat. 

I klinisk praxis mäts ofta inte Ca, Mg och Fosfat och eftersom deras påverkan är marginell på anjongapet förenklas ekvationen och beräknas enligt AG = Na – (Cl + HCO3). Det finns alltså flera omätbara anjoner och katjoner som inte tas med i ekvationen, varför ett alternativt sätt att definiera anjongpapet är AG = omätbara anjoner – omätbara katjoner. 

Ett högt anjongap indikerar förekomst av en omätbar anjon i serum (se figur 1 nedan). Det kan ses vid tillstånd som diabetes ketoacidos, intoxikationer, njursvikt med uremi och vid laktacidos. 

Albuminkorrigerat anjongap

Det viktigaste buffrande negativt laddade proteinet i serum är albumin, varför ett lågt albuminvärde gör att anjongapet minskar. Vid mycket låga albuminnivåer (exempelvis vid långvarig inflammation/infektion, malignitet, malnutrition, leversvikt, eller intensivvård bör därför tröskelvärdet för anjongapet justeras ned med 2,5 mEq/L per 10g/L som albumin är lägre än normalvärdet 40g/L. Referensvärdet för albuminkorrigerat anjongap kan beräknas enligt formeln: Normalt referensintervall – (0,25 x (40 – [S-albumin /g/L])).  



S-alb (g/L)
403224168
Övre normalgräns för
Albuminkorrigerat
anjongap mEq/L
108642

Referensintervall

I äldre studier och beskrivningar av anjongpap har referensintervall upp till 16 mEq/L angetts. I modernare studier anges lägre referensintervall eftersom nya laboratoriemetoder för att mäta elektrolyter införts. I vissa material på friska individer var medelvärde för anjongapet på 6 mEq/L och i andra sågs ett medelvärde på 9 mEq/L. Detta kan ge en fingervisning över ungefärliga normalvärden hos friska. UpToDateOnline anger 3-9 mEq/L som normalt anjongap medan medscape/emedicine anger 3-11 mEq/L. Vad som är ett normalt anjongap beror också på vilken mätmetod som används vid det lokala laboratoriet. Principen att räkna anjongap vid en oklar metabol acidos på akutmottagningen, och använda sig av ett något lägre cut-off värde (t e x 9-10 mEq/L) för att gå vidare och testa för ovanliga substanser anser vi vara en bra princip (hellre fälla än fria vid potentiellt allvarliga tillstånd). Vi brukar använda referensintervallet 3-10 mEq/L för ett normalt anjongap (vid normalt S-albumin), men vill betona att skillnader förekommer mellan olika laboratorier och att olika formler och metoder används i olika delar av världen [2,4,10].

Anjongap i klinisk praktik

1. Vanliga orsaker till metabol acidos med högt anjongap (High anion gap metabolic acidosis, HAGMA)

I inledningen föreslog vi den förenklade minnesramsan KULT (Ketoacidos, Uremi, Laktat, Tox) som stöd för identifiera orsaker till HAGMA. Nedan går vi översiktligt igenom orsaker till HAGMA enligt KULT [11]. 

Tabell 1. Förslag till översiktlig bedömning av HAGMA enligt KULT

2. Fördjupad bedömning av orsaker till HAGMA

I en artikel från 2008 i The Lancet föreslås en ny minnesramsa – GOLD MARK – som stöd för fördjupad bedömning av orsaker till HAGMA. Anledningen var att tidigare minnesramsor som tex MUD PILES innehåller orsaker som blivit extremt ovanliga pga ändrad läkemedelsanvändning. Paraaldehydförgiftning är extremt ovanligt och järn och isoniazid är några i mängden av ämnen som orsakar hypotension och laktacidos. Dessutom har  flera “nya” organiska syror som ger upphov till HAGMA identifierats, vilka inte täcks in i MUD PILES. Det handlar om D-laktat (hos pat med korta tarmens syndrom); 5-oxoproline associerat med kronisk paracetamolanvändande hos kronisk malnutrierade (länk); och propylenglykolförgiftning som kan ses vid infusioner med höga doser lorazepam och fenobarbital som löses i propylenglykol som sedan metaboliseras till D-laktat och L-laktat (där D-laktat inte regelmässigt analyseras och därför riskerar att missas). Akronymen GOLD-MARK representerar alltså en mer omfattande minnesregel för orsaker till HAGMA [1,3].

TABELL 2 – förslag till bedömning av metabol acidos med högt anjongap enligt GOLD-MARK

Referenser

  1. The Lancet. GOLD MARK: an anion gap mnemonic for the 21st century.Vol 372 September 13, 2008
  2. Emmet, M. The anion gap/HCO3 ratio in patients with a high anion gap metabolic acidosis. Sterns RH (ed). UpToDate. Waltham, MA: UpToDate; october 2019.
  3. S. Lee. Clinical Usefulness of the Serum Anion Gap. Electrolyte & Blood Pressure 4:44-46, 2006
  4. Kraut J.A. Serum Anion Gap: Its Uses and Limitations in Clinical Medicine. Clin J Am Soc Nephrol 2: 162–174, 2007
  5. Sajan A. Recurrent Anion Gap Metabolic Acidosis.Am J Med Case Rep. 2019 ; 7(9): 200–202. doi:10.12691/ajmcr-7-9-5.
  6. J.A Kraut. Metabolic Acidosis of CKD: An Update. Am J Kidney Dis. 2016;67(2):307-317
  7. https://www.renalfellow.org/2017/06/30/an-under-recognised-cause-of-metabolic/
  8. http://www.clinmed.rcpjournal.org/content/16/6/524.full 
  9. https://emcrit.org/ibcc/agma/
  10. https://emedicine.medscape.com/article/2087291-overview 
  11. Edgar V. Lerma, Nephrology secrets, first south asia edition, Elsevier 2019. 

Nordiska RETTS mötet 2019

Vilken dag! På Nordiska RETTS mötet (NRM19) samlades de mest erfarna och kunniga sjuksköterskorna från hela landet – och i år blev Jonathan inbjuden för att hålla i en workshop om blodgaser!

En djupdykning i blodgaser med Sveriges mest erfarna akutsjuksköterskor

 

Här finns allt material från workshopen:

Och maila oss gärna om du inte själv kommer åt artiklarna via PubMed!

Extrem acidos vid hjärtstopp

Hjärtstopp är bland det stressigaste man kan handlägga – och mitt i allt får man en blodgas som oftast visar acidos.

Men vad säger ett pH på 6.8 egentligen om prognosen? Innebär det alltid att det är lönlöst att fortsätta? Vilka fysiologiska effekter medför en sådan extrem acidos?

I denna föreläsning går Jonathan Ilicki igenom extrem acidos vid hjärtstopp och landar i en spännande slutsats. Åhörarkopior och podcastversionen finns på ScanFOAM.

https://www.youtube.com/watch?v=K-5LG53cV9E

Base excess – beyond the basics

Base excess (BE) är ett värde som svaras ut på de flesta system som används för patientnära analys av blodgaser i Sverige idag. BE är en viktig pusselbit vid analys av syra-basstatus och i det här inlägget går Mikael på djupet i ämnet och har även gjort ett efterföljande quiz där du kan testa dina kunskaper inom blodgastolkning. Läs vidare för att lära dig mer om hur base excess beräknas, hur det kan användas vid analys av syra-basstatus, hur du beräknar om sekundära kompensatoriska mekanismer för pH-balans är tillräckliga, och hur du kan göra för att avslöja om det föreligger flera syra-basrubbningar samtidigt. Inlägget spänner över ett brett fält med allt ifrån en historisk exposé till nördiga formler och exempel med patientfall. Tyck gärna till och kommentera inlägget eller återkoppla till oss via mail eller på hemsidan. Base excess, nyckeln till kombinerade syra-basrubbningar

Sammanfattning och viktigaste punkter

  • BE är ett kalkylerat värde och representerar ett index över den icke-respiratoriska (metabola) komponenten av syra-basbalansen och bör i första hand tolkas i relation till pH och pCO2 vid bedömning av syra-basstatus. 
  • Normalt referensintervall är mellan +3 och -3 mmol/liter. Om BE > +3 mmol/l föreligger metabol alkalos. Om BE < -3 mmol/l föreligger metabol acidos. Ju större avvikelse från normalintervallet, desto allvarligare underliggande rubbning
  • Fysiologiska lagar reglerar förhållandet mellan primär rubbning och sekundär kompensation, således kan förväntad storlek på sekundär kompensation beräknas.
  • Om nivån av sekundär kompensation avviker från det förväntade bör kombinerade syra-basrubbningar eller multipla sjukdomsorsaker misstänkas.
  • Anjongap albumin och laktat bör regelmässigt tas i beaktande om det kompensatoriska svaret avviker från det förväntade och beroende på dessa värden kan utredningen fokuseras på underliggande tillstånd. 
  • Vid mycket låga S-albuminnivåer bör BE korrigeras enligt formeln 0,25 x (42 – [S-albumin g/L)]

Bakgrund och historia

Konceptet med base excess kan historiskt spåras tillbaka till 1950 och 1960-talen. Under ett polioutbrott i Danmark noterades att poliodrabbade patienter hade mycket höga halter av bikarbonat i blodet och man trodde först att denna metabola alkalos av oklar genes var associerad med poliosjukdomen i sig. Senare under polioutbrottet fann man att höga halter av bikarbonat hos poliopatienterna snarare berodde på höga halter av koldioxid sekundärt till neuromuskulär påverkan och nedsatt ventilation. Man misstänkte således att de höga HCO3-nivåerna var en kompensatorisk metabol alkalos, och man startade på basen av de insikterna omfattande program för manuell ventilation av poliodrabbade, vilket tros ha bidragit till många patienter överlevde. Så sent som på 1950 och 60-talet var det begränsad tillgång till laboratorieanalyser av syra-basbalansen och det fanns i princip ingen tillgång till mekanisk ventilation i respirator på det sätt som vi känner till idag. Slutsatserna man drog vid polioutbrottet i Danmark på 50-talet var att primära rubbningar i syra-basbalansen har sekundära kompensatoriska mekanismer.  Detta är en essentiell princip och grundförutsättning när vi analyserar syra-basbalansen och vid blodgasanalys även idag [1].

Olika sätt att bedöma den metabola komponenten i syra-basbalansen 

Det finns olika sätt att bedöma den metabola komponenten i syra-basbalansen som skiljer sig lite åt. Vi redogör nedan översiktligt för tre metoder och kommenterar kortfattat fördelar och nackdelar. 

1. CO2/HCO3 – metoden. 

Kallas även för “the boston approach”. Bygger helt på Henderson-Hasselbachformeln och bygger på data från en stor kohort stabila patienter med kända med “kompenserade syra-basrubbningar. Denna metod är enkel och lämpar sig väl för enklare syra-basrubbningar, men eftersom HCO3 påverkas av PaCO2 blir omfattningen av andra syror än koldioxid svårare att bedöma. CO2/HCO3-metoden är mest användbar för att avgöra habituellt pCO2 hos patienter med kronisk respiratorisk insufficiens som vid t e x KOL [10].

2. Base excess/deficit – metoden

Kallas också den danska metoden eller “Köpenhams-metoden”. Vi går igenom Base Excess-metoden i detalj nedan, men kortfattat kan den anses vara mindre påverkad av den respiratoriska komponenten av syra-basbalansen och därmed bättre spegla den metabola komponenten. Svagheter som förts fram är att värdena kan bli osäkra vid låga albuminnivåer och att den bygger på en in vitro modell [1,2,10]. 

3. Anjongap-metoden

Den här metoden försöker adressera svagheterna i både boston- och Köpenhamnsmetoderna och bygger på principen om elektroneutralitet. Anjongapet (AG) är skillnaden mellan positivt och  negativt laddade joner i extracellullärvätskan och beräknas AG = ( [Na] + [K]) – ([Cl] + [HCO3]) och är normalt mellan 12-16 mmol/L (beroende på lokala referensvärden). Vid metabol acidos ansamlas anjoner som t e x laktat och ketoner vilka inte ingår i ekvationen vilket ökar anjongapet pga att syror med negativ laddning leder till lägre HCO3-nivåer då fysiologiska processer försöker bibehålla elektroneutralitet. Svagheter med den här metoden kan vara att värdera vilket värde som bör anses vara ett normalt anjongap och beräkningarna påverkas även av albumin och fosfat, samt att att bikarbonatnivåerna kan påverkas av yttre påverkan på pCO2 som vid tex mekanisk ventilation [10]. 

Definition av base excess

Den biokemiska definitionen av base excess som hänvisas till i litteraturen brukar anges som att base excess kan definieras som den koncentration av stark syra eller stark bas, vilken krävs för att, i en in-vitromiljö, i ett prov med helblod återställa pH till 7,40 medan pCO2 i samma prov hålls konstant vid 5,32 kPa och provets temperatur hålls konstant vid 37 grader celsius

Genom att pCO2 hålls konstant måste alla förändringar i pH bero på den icke-respiratoriska komponenten av syra-basbalansen. Om det inte sker någon förändring av pH vid konstant pCO2 behövs ingen tillsats av stark syra/bas för att hålla pH vid 7,40 och base excess är således 0 mmol/l. Om base excess är +6 mmol/l behövs stark syra tillsättas och vid BE -6 mmol/l behövs stark bas. Det senare benämns ibland även för base deficit.

I litteraturen hänvisas även till olika typer av base excess som skiljer sig en aning åt, men på de flesta blodgasanalyser som används i klinisk praxis, är Standard Base Excess (SBE) det som normalt används och benämns base excess. SBE kallas även base excess i extracellullärvätskan och definieras som summan av den buffrande kapaciteten i extracellullärvätskan, och utgörs av hemoglobin, plasmaproteiner, fosfat och bikarbonat. SBE kommer fortsättningsvis att kallas base excess i den här artikeln. 

Base excess kan förenklat anses representera den icke-respiratoriska komponenten i syra-basbalansen (metabol alkalos och metabol acidos) och hur mycket värdet avviker från normalintervallet speglar allvarlighetsgraden av den underliggande icke-respiratoriska syra-basrubbningen. De flesta blodgasapparater beräknar idag base excess (SBE) baserat på en modifiering av Van Slyke-ekvationen: SBE = (HCO3 − 24.4) + (2.3 x Hb + 7.7) x (pH − 7.4) x (1 − 0.023 x Hb). I beräkningar av SBE antas ett Hb-värde schablonmässigt på 30-50 g/L för att minimera påverkan av skillnader i Hb-värdet. Svaret ges i mmol/liter och normalintervallet är mellan 0 +- 3 mmol/liter [1,10].

Base excess normalvärden

  • Normalvärde för BE är +- 3 mmol/liter
  • Metabol acidos definieras som BE – 3 mmol/l eller lägre 
  • Metabol alkalos definieras som BE +3 mmol/l eller högre.

Tre principiella steg vid bedömning av Base Excess vid blodgasanalys

Base excess kan användas som en del i analysen av störningar i syra-basbalansen och analysen med base excess kan delas in i tre principiella steg

  1. Bedöm av base excess i relation till pH och pCO2
    • Vilken är den primära stora-basrubbningen?)
  2. Föreligger adekvat kompensation
    • Beräkna kompensation i relation till den primära rubbningen och bedöm enligt tabell 1 nedan? Om nej gå vidare till punkt tre.
  3. Analysera orsaker till aktuellt base excess i relation till förväntat base excess, korrigera för albumin och beräkna anjongap
    • Beror avvikande BE på avvikande S-Na, S-Cl eller S-Albumin eller alla tre?
    • Är anjongapet förhöjt vilket indikerar en kombinerad metabol rubbning?

Ibland förekommer flera syra-basrubbningar samtidigt och det kan då vara svårt att förstå vilken rubbning som är den primära. Metabola rubbningar av syra-basbalansen utan samtidigt respiratorisk kompensation kan leda till särskilt allvarliga syra-basrubbningar och kräver ofta snabba och kraftfulla behandlingsåtgärder som t. ex.  mekanisk ventilation i respirator eller intensivvård.

Beräkning av adekvat kompensatoriskt svar på primär syra-basrubbning

I en metaanalys från 1998 undersökte författarna relationen mellan pCO2 och base excess i historiska studier och slutsatserna i artikeln ledde fram till fyra principer eller regler som kan användas för att ställa upp ekvationer och beräkna om en adekvat kompensation föreligger [3].

Tabell 1. Syra-basrubbningar och förväntat kompensatoriskt svar (sammanställd från ref 1,2,3)

Klicka på länken nedan för nedladdningsbar högupplöst PDF

Beräkning-av-kompensatoriskt-svar

 

Nedbrytning av beståndsdelar som påverkar base excess och kombinerade metabola syra-basrubbningar

Man kan utföra omfattande matematiska beräkningar för att räkna ut hur olika ämnen som HCO3, Cl, albumin och Na var för sig påverkar base excess, men vi rekommenderar en enklare variant där man räknar ut albuminkorrigerat base excess och vid oklara mer komplicerade svårbedömda rubbnignar, även albuminkorrigerat anjongap.

Albumin och base excess

Albumin är en neg laddad molekyl och ett av de blodproteiner som ingår i kroppens pool av buffrande baser. Vid låga albuminvärden (som ofta ses hos kritiskt sjuka) riskerar patienter att utveckla metabol alkalos pga samtidig stegring av HCO3, då kroppens fysiologiska processer försöker upprätthålla elektroneutralitet [5,6]. Det handlar om en påverkan på base excess med ca 1,25 mmol/L per 5g/L albumin [5]. Dessa patienter utvecklar då ofta en metabol alkalos med lågt anjongap [6]

 Base excess beräkningar enligt Van Slykes formel tar oftast inte hänsyn till låga albuminnivåer, vilka kan påverka BE-värdet. Frågan blir intressant när man sätter cut-off värdet för metabol acidos/alkalos hos patienter med mycket låga albuminnivåer eller beräknar skillnaden mellan faktisk base excess och uppmätt base excess [4]. Hur BE påverkas av av albumin kan beräknas enligt formeln

albumineffekt på base excess = 0,25 x (42 – [S-albumin /g/L]) och formeln bygger på studier av Figge et al [7,8] 

Exempel: S-albumin är 28 g/L, påverkan på BE blir således 0,25 X(42-28)= 0,25 x 14 = 3,5 mEq/L[5].

Vid låga albuminnivåer (som ofta ses hos kritiskt sjuka) finns därför en risk att överskatta uppmätt base excess jämfört med faktiskt albuminkorrigerat base excess och därmed missa en metabol acidos pga ett falskt normalt anjongap [5].

Albuminkorrigerat anjongap

Anjongapet är en viktig variabel i syra-basanalysen för att avslöja ämnen i blodet som kan ge upphov till metabol acidos . Anjongapet kan beräknas på lite olika sätt men oftast enligt formeln = (Na ) – (Cl + HCO3). Eftersom kroppen strävar efter elektroneutralitet, talar ett högt anjongap för att det finns någon syra i blodet som påverkar relationen mellan positivt och negativt laddade joner. Vanliga kliniska tillstånd med ett högt anjongap är t ex diabetes ketoacidos där betahydroxysmörsyra påverkar anjongapet, intoxikation med salicylater, laktatstegring vid epileptiska kramper och uremi vid njursvikt. Vid okomplicerade sådana tillstånd ses även motsvarande pH-påverkan; vi ser en acidemi (lågt pH) och en metabol acidos BE < -3). Albumin kan påverka tolkningen av anjongapet och i en artikel i NEJM från 2018  rekommenderas att man ökar anjongapet med 2,5 mmol/l för varje förändring av albumin med 10g/L från “normalvärdet” 40g/L[3]. Huruvida anjongapet ska korrigeras för albumin eller inte är enligt vår uppfattning mer omdebatterat än albuminkorrigerat base excess. Enligt samma teoretiska modell som för albuminkorrigerat base excess förespråkar vissa ett albuminkorrigerat anjongap. Dock har detta i studier inte visats sig ha någon större klinisk fördel för att upptäcka t e x lätt till måttlig laktacidos [9], men dessa studier gjordes innan laktat regelmässigt analyserades på blodgasen, vilket oftast är fallet idag. Få studier är gjorda på syra-basbedömningar vid låga albuminnivåer och man kan därför, som en försiktig approach oberoende av uppmätt anjongap, riskbedömma för ansamling av ketoner, uremiska produkter, laktat eller om klinisk misstanke finns även andra syror (ex salicylat, toxiska alkoholer).

Exempel på kliniska tillstånd där kombinerade syra-basrubbningar kan förekomma

Exempel 1 optiatintoxikation och diabetes ketoacidos

Drogmissbrukande patienter riskerar oftare att drabbas av medicinska komplikationer till kroniska sjudomar som t e x diabetes. Ett exempel på en patient med kombinerad syrabasrubbning är en patient med diabetes som pga drogmissbruk slarvat med insulinet och drabbats av en ketoacidos (metabol acidos) och samtidig opiatöverdos med koldioxidretention. Den patienten kommer att ha en samtidigt respiratorisk- och metabol acidos istället för en kompensatorisk respiratorisk alkalos vilket leder till en allvarlig pH rubbning med mycket lågt pH som följd.E

Exempel 2. Diabetes ketoacidos med uttalade kräkningar

En patient med diabetes ketoacidos (metabol acidos) som har samtidiga kräkningar som leder till förlust av kloridjoner och metabol alkalos. Den patienten kommer att ha en kombinerad metabol acidos och alkalos, vilket kan avslöjas via ett högt anjongap pga ketoner (syra) i blodet. Det bör således misstänkas om anamnesen och övriga blodprover starkt talar för diabetes ketoacidos men pH och BE avviker från det förväntade vid tillståndet

Exempel 3. Metabol acidos och svår KOL

Vid tIllstånd som t e x sepsis med laktatstegring, generell kramp eller annan metabol acidos är den respiratoriska kompensationen en viktig funktion för att minska den metabola påverkan på syra-basbalansen. KOL-patienten kommer pga av sin kroniska lungsjukdom ha mindre marginaler att respiratoriskt kompensera för den metabola komponenten, vilket ger större påverkan på syra-basbalansen än motsvarande metabol rubbning hos en lungfrisk patient.

Dessa patienter kommer även att vara svårare att räkna på rubbningarna eftersom de har en kronisk kompensatorisk metabol alkalos som utgångsläge pga sin kroniska koldioxidretention. De kan således ha en relativ metabol acidos trots ett normalt eller positivt BE, men deras anjongap kommer då att vara högt pga den nytillkomna syran i blodet.

Referenser:

  1. Berend K. Diagnostic use of base excess in acid-base disorders. New Eng J Med 2018; 378: 1419-28. 
  2. https://acutecaretesting.org/-/media/acutecaretesting/files/pdf/base-excess–the-basics(1).pdf
  3. Schlichtig R, Grogono A, Severinghaus J. Human pCO2(a) and standard base excess compensation for acid-base imbalance. Crit Care Med 1998; 26: 1173-79.
  4. M. Park. Clinical utility of standard base excess in the diagnosis and interpretation of metabolic acidosis in critically ill patients.Braz J Med Biol Res 41(3) 2008
  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883200/
  6. Vincent et al. Albumin administration in the acutely ill: what is new and where next? Critical Care 20142014, 18:23
  7. Figge et al. Anion gap and hypoalbuminemia. Crit Care Med. 1998 Nov;26(11):1807-10.
  8. Figge et al. Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med. 1992 Nov;120(5):713-9.
  9. Dinh et al. Correcting the anion gap for hypoalbuminaemia does not improve detection of hyperlactataemia. Emerg Med J. 2006 Aug; 23(8): 627–629.
  10. Kishen R. Facing acid–base disorders in the third millennium – the Stewart approach revisited. International Journal of Nephrology and Renovascular Disease 2014:7 209–217

Metabol alkalos quiz

Metabol alkalos: kräkningar och diuretika – eller finns det mer att veta?

En hel del faktiskt! Läs inlägget om metabol alkalos och lägg 5 minuter på quizet för att testa dina kunskaper om en styvmoderligt behandlad syra-basrubbning som kan vara farligare än du tror för din patient.

Tyck till i kommentarsfältet, vi vill gärna ta del av dina åsikter!

Metabol alkalos – kräkningar och diuretika eller finns det mer att veta?

Metabol alkalos är en vanlig men ibland förbisedd syra-basrubbning som kan vara knepig att förstå sig på. Vad beror rubbningen på, hur behandlar man, vilka värden är farliga och när ska man starta fördjupad utredning? Frågorna är många och i det här inlägget djupdyker Mikael i ämnet och försöker reda ut begreppen. Håll även utkik efter det efterföljande quizet “The metabolic alkalosis Championship” där du kommer att kunna testa dina kunskaper om metabol alkalos när du läst blogginlägget. Det finns även ett sammanfattande flödesschema med förslag till utrednings- och handläggningsalgoritm som kan användas som checklista

Metabol-alkalos-flödesschema

 

Vi är intresserade att veta vad du tycker om innehållet på blodgas.se, tyck gärna till i kommentarsfältet!

Sammanfattning och viktigaste punkter

  • Metabol alkalos definieras som pH >7,45 och HCO3- >28mmol/L eller BE > +3.
    • pH <7,50 = lindrig pH>7,50 = måttlig och pH >7,55 = uttalad rubbning.
    • Lindrig metabol alkalos är ofta asymptomatisk och snabbt övergående.
    • Måttlig och uttalad rubbning som inte är snabbt övergående är förknippad med hög mortalitet
    • Vanliga utlösande orsaker är hypokloremi sekundärt till diuretikabehandling, antibiotikabehandling, kräkningar eller ventrikelsond
    • Andra utlösande orsaker kan vara hypovolemi, hypokalemi, hypomagnesemi
    • Majoriteten av patienterna svarar på behandling med natriumklorid (chloride responders) om inte – överväg utökad provtagning i första hand med U-klorider (se flödesschema).
    • Ovanligare orsaker kan vara endokrina tillstånd med ökade aldosteron- renin- och kortisolnivåer.
    • Ovanliga ärftliga tillstånd innefattar Gitelmans- och Bartters syndrom med ökad kloridutsöndring i urinen samt diarretillstånd med ökad kloridutsöndring via avföringen
    • Kontrollera anjongap och om skillnad mellan delta HCO3 och uppmätt HCO3, gå vidare med beräkning av förändringen av anjongapet från normalnivå delat delat med förändringen i bikarbonat från normalnivå (delta delta-ratio) för att inte missa kombinerade syra-basrubbningar.

Introduktion

Det finns olika definitioner av primär metabol alkalos beroende på vilken litteratur man studerar, men vi har valt pH >7,45 och [HCO3-] >28 mmol/L eller BE > +3 vilken är samma definition som används i  “Akut internmedicin behandlingsprogram för SLL 2017”. Den definitionen inkluderar begreppet Base Excess (BE), vilket är summan av alla buffrande baser i blodet och är en vanligt förekommande analys på patientnära blodgasanalyser inom akutverksamhet i Sverige.

I t ex USA används ofta bara bikarbonat [HCO3-] och inte base excess, och då brukar [HCO3-] > 30 mmol/L användas som gräns.

Metabol alkalos är en relativt vanlig syra-basrubbning bland patienter på akutmottagningar och i samband med sjukhusvård och orsakas av

  • ökad produktion eller tillförsel av alkali,
  • minskad utsöndring av alkali och/eller
  • ökad förlust av vätejoner från extracellullärvätskan.

Tillståndet är ofta asymptomatiskt vid lindrig alkalos, men vid måttlig-uttalad alkalos (pH >7,55 eller [HCO3-] >40mmol/L) kan cellulära funktioner påverkas och symtom som förvirring, kognitiv påverkan, muskelryckningar och ökad risk för epileptiska krampanfall uppträda. Måttlig-uttalad metabol alkalos som är svår att korrigera är förknippad med betydande ökad risk för mortalitet.

Fysiologiska processer som påverkar syra-basbalansen

Det finns några principiella system i kroppen som strävar efter balans för att upprätthålla normala fysiologiska funktioner. De principiella system som driver processer som påverkar t e x syra-basbalansen är

  • elektroneutralitet som innebär att summan av positiva joner =summan av negativa joner (strävan mot elektroneutralitet påverkar te x utsöndringen av elektrolyter och alkali i njuren).
  • pH inom normalt intervall (påverkar t e x hur andningen regleras för utsöndring av koldioxid eller njurens reglering av HCO3).
  • Iso-osmolalitet, antalet lösta partiklar per volymsenhet är densamma i alla kroppens vätskerum (påverkar t e x hur vatten rör sig mellan olika vätskerum i kroppen)

Metabol alkalos uppkomstmekanismer

Eftersom kroppens regleringssystem är effektiva, är metabol alkalos hos en i övrigt frisk individ oftast relativt snabbt övergående. Njuren har en viktig roll i regleringen av kroppens syra-basbalans genom sekretion och absorption av elektrolyter och ämnen som påverkar elektroneutralitet och pH. [HCO3-] nivåerna regleras i princip uteslutande i njuren som kompenserar tillstånd med ökad mängd alkali i extracellulärvätskan (ECV) genom ökad utsöndring i urinen. Konceptuellt kan man därför tänka att det krävs både en initieringsprocess och underhållsprocess för att metabol alkalos ska kvarstå. Underhållsprocessen kan förenklat förklaras genom minskad utsöndring eller ökat återupptag av [HCO3-] i njuren.

Initieringsprocesser

Processerna som ger upphov till metabol alkalos kan övergripande delas in de som ger ökade nivåer av alkali, eller minskade nivåer av vätejoner (H+) i ECV.

Ökade nivåer av alkali kan vara från en exogen källa (natriumbikarbonat, brustabletter, citrat vid blodtransfusion) eller endogena källor (nedbrytning av citrat, laktat och acetat). Kroppen är vanligen ganska bra på att reglera överskott av bikarbonat via ökad renal utsöndring och därmed förhindra att allvarlig alkalos uppkommer. Regleringen kan liknas vid ett handfat eller diskho som har ett översvämningskydd nära kanten; fylls det på mer vatten rinner extra vatten ut och handfatet svämmar inte över. Är det däremot stopp i avrinningsskyddet blir det översvämning, och detsamma händer i kroppen när regleringssystemen är påverkade vilket ger upphov till metabol alkalos.
Minskade nivåer av vätejoner kan bero på ökad utsöndring via njurarna (vid behandling med t e x tiazid- eller loopdiuretika) eller ökad utsöndring via magsäcken eller tarmarna (kräkning, v-sond, ileus, pylorusstenos)

Underhållsprocesser

Man kan dela in de underhållsprocesser som gör att en metabol alkalos kvarstår i principiellt fyra orsakskategorier:

  • Kloridbrist
  • Kaliumbrist
  • Hypovolemi med minskad ECV
  • Minskad glomerulär filtration (GFR som ses vid grav njursvikt)

Det finns även diverse andra mer svårkategoriserade tillstånd och vi har sammanställt ett flödesschema över de olika orsakerna till metabol alkalos här (se nedan).

Kloridbristorsakad metabol alkalos (hypoklorem metabol alkalos) är den vanligaste formen av metabol alkalos. Enligt principen om elektroneutralitet och pH-reglering som berörts ovan hänger ofta Cl- och HCO3- ihop på det sättet att minskar nivåerna av den ena, kommer nivåerna av den andra att öka och tvärtom. Ökade kloridförluser och låga nivåer av klorider i ECV kommer därmed att leda till att nivåerna av bikarbonat ökar, med metabol alkalos som följd.  

Ökade kloridförluster kan ses vid flera tillstånd där de vanligaste är

  • behandling med loop- och tiaziddiuretika,
  • förlust av magsyra vid kräkningar eller hos patienter som behandlas med ventrikelsond ur vilken det backar mycket magsyra.
  • användning av betalaktamantibiotika som te x piperacillin/tazobactam som då ofta orsakar en hypokalem, hypoklorem metabol alkalos.

Hos barn kan pylorusstenos ge upphov till kräkningar som resulterar i metabol alkalos och andra ovanliga kombinerade rubbningar som diabetes ketoalkalos finns också beskrivna. Diabetisk ketoalkalos innebär att det föreligger både en metabol acidos och metabol alkalos samtidigt och bör misstänkas vid uttalad hyperglykemi och klinisk bild som vid diabetes ketoacidos, men normalt, eller lätt sänkt pH. Anjongapet kommer då att vara förhöjt utan motsvarande minskning av HCO3 och pH vilket gör att en diabetes ketoacidos riskerar att missas. Vi föreslår därför att rutinmässigt räkna anjongap vid blodgastolkning och vid differens mellan anjongap och HCO3 och pH även räkna deltagap eller deltaratio för att inte missa kombinerade metabola rubbningar som kan maskera allvarlig sjukdom.

Kompensatorisk metabol alkalos (sekundär metabol alkalos)

Kroniskt underventilerade patienter har ökade nivåer av pCO2 i blodet. Pga kroppens strävan efter normalt pH leder det till en kompensatorisk metabol alkalos genom ökat bikarbonatupptag och ökad kloridutsöndring i njuren. Vanliga tillstånd med kronisk underventilering är kronisk obstruktiv lungsjukdom (KOL) och neuromuskulära sjukdomar som ALS. Vid en akut på kronisk respiratorisk försämring, som vid en akut exacerbation av KOL, ses ökade nivåer av pCO2 i blodet med sjunkande pH som följd. Om det ventilatoriska problemet behandlas effektivt med t e x non-invasiv ventilation (NIV), leder det till sjunkande pCO2-nivåer och stigande pH, ibland till nivåer som orsakar en alkalos. Dessa patienter kan ha en kronisk kloridbrist vilket, om den inte ersätts via kosten eller i droppform kan leda till ökade nivåer av bikarbonat i relation till pCO2-nivåerna med en kvarstående metabol alkalos som följd. KOL-patienter kan därför efter NIV-behandling vid en akut exacerbation ha en kvarstående metabol alkalos (med pH >7,45) som beror på kloridbrist.

Exogent intag av Bikarbonat

Högt intag av kalciumkarbonatinnehållande antacida, som Rennie och Novalucol, kan ibland ge upphov till metabol alkalos genom ökade nivåer av HCO3 i blodet. Andra exempel är brustabletter innehållande natriumvätekarbonat. Anamnes avseende alla exogena substanser, även receptfria, är därför viktigt vid handläggning av tillstånd med ockult metabol alkalos.

Mjölk-alkali syndromet och hypercalcemi

“Milk-alkali”-syndromet är idag nästan en medicinhistorisk diagnos. Begreppet har sitt ursprung från att vissa patienter förr i tiden intog stora mängder mjölk och antacida som behandling för ulcus med efterföljande metabol alkalos, hypertoni och hyperkalcemi som följd. Idag kan liknande effekter ses hos patienter som står på höga doser, eller överkonsumerar calciumtabletter för tex osteoporos, särskilt om de kombineras med andra medel med bikarbonat (se stycket ovan).

Hyperkalcemi kan orsaka metabol alkalos genom vätskebrist och efterföljande ökat bikarbonatupptag, medan hyperkalcemi vid primär hyperparathyroidism oftare är associerad med metabol acidos.

Endokrinologiska orsaker till metabol alkalos – ökad mineralokortikoid effekt

Primär hyperaldosteronism ses vid t e x aldosteronproducerande tumörer eller binjurebarkshyperplasi. Den ökade nivåerna av aldosteron leder till påverkan på njurens elektrolytreglering med ökad resorption av natrium och vatten, hypokalemi och lindrig metabol alkalos.

Sekundär hyperaldosteronism med ökade reninnivåer orsakar också metabol alkalos. Dessa tillstånd kan delas in efter hydreringsgrad och samtidig förekomst av hypertoni. Vid reninproducerande tumörer och njurartärstenos ses höga renin- och aldosteronnivåer, euvolemi/hypervolemi och hypertoni.

Tillstånd med hypovolemi och hyponatremi leder till ökad reninfrisättning som i sin tur leder till ökade aldosteronnivåer med efterföljande metabol alkalos. Vid cushings syndrom och långvarig behandling med höga doser kortikosteroider (kortisonbehandling) kan en kombination av metabol alkalos, hypertoni, kliniska tecken till ökade kortisolnivåer och höga nivåer av klorider i urinen uppträda. Metabol alkalos vid ökade kortisolnivåer beror på kortisolets påverkan på mineralokortioidreceptorn i njurens samlingsrör.

Bartters- och Gitelmans syndrom – Ovanliga ärftliga tillstånd som ger metabol alkalos

Bartters syndrom är ett mycket ovanligt ärftligt tillstånd som leder till påverkan på njurtubuli vilket leder till salt wasting via urinen, hypokalemi, metabol alkalos och hyperaldostenorism. De skiljer sig dock från patienter med hög aldosteron genom att de diagnostiseras i yngre år och har normalt blodtryck. Hos barn med hypokalemi och metabol alkalos bör Bartters- och Gitelmanns syndrom övervägas. Vid Gitelmanns syndrom som är en liknande ärftlig påverkan på njurarnas förmåga att reglera elektrolytbalansen ses samma typ av metabol alkalos som vid behandling med tiaziddiuretika; hypokalem, hypoklorem metabol alkalos.

Klinisk approach, differentialdiagnostik och utredning vid metabol alkalos

För att sammanfatta initierings och underhållsprocesser samt skapa en överblick över differentialdiagnostik och utredning vid metabol alkalos har vi sammanställt ett flödesschema vilket sammanfattar en diagnostisk algoritm för utredning av metabol alkalos.

Figur 1. Flödesschema över klinisk approach för differentialdiagnostik och provtagning

Metabol-alkalos-flödesschema

 

Viktiga anamnestiska uppgifter

Kräkningar, diarréer, ätstörningar, nutrition, viktutveckling, andra kroppsliga förändringar, antacida, receptfria läkemedel, extrem kost.

Klinisk undersökning

Blodtryck, hydreringsgrad, kroppskonstitution (cushing), nutritionsstatus.

Provtagning

Utöver blodgas för identifikation av tillståndet, överväg fullständigt elektrolytstatus (Na, K, Mg, Cl, Ca, Fosfat), albumin, kreatinin, urea. Räkna anjongap och om osäkerhet mellan relationen HCO3 och anjongap, räkna också deltagap eller deltaratio. Urinklorider (U-klorider) är ett avgörande prov, men ofta finns det en tydligt utlösande orsak och då kan kontroll av U-klorider anstå till osäkra fall eller där patienten inte svarar på behandling.

Behandling

För specifika behandlingsrekommendationer rekommenderar vi att följa lokala riktlinjer och guidelines.

  • Lindriga och okomplicerade rubbningar

Behandlas förslagsvis genom att eventuella utlösande orsaker som läkemedel pausas eller tas bort. Om kloridbristtillstånd misstänks föreslås behandling med isoton NaCl och korrigering av eventuell Kalium och Magnesiumbrist.

  • Måttliga och uttalade rubbningar samt komplicerade fall utan tydligt utlösande orsak.

Handläggning sker förslagsvis i samråd med läkare som har vana att hantera komplicerade syra-basrubbningar och och eventuell riktad specifik behandling.

Svårighetsgrad och nivåindelning

De flesta verkar överens om att pH-värden mellan 7,46-7,50 innebär lindrig rubbning, och dessa är i de flesta fall asymtomatiska. I sällsynta fall samexisterar flera syra-basrubbningar vilket påverkar pH-värdet och kan göra att alkalosen underskattas (se tidigare avsnitt om diabetes ketoalkalos, aniongap, deltagap och deltaratio).

Gränsen för måttlig och uttalad metabol alkalos är något mer diffus men ofta anges pH värden mellan 7,50-7,55 som måttlig, och >7,55 som uttalad rubbning. Man har i några äldre studier sett en korrelation mellan måttlig och uttalad metabol alkalos och kraftigt ökad mortalitet bland sjukhusvårdade patienter, och vi föreslår att måttliga och uttalade rubbningar bör handläggas av läkare och vårdavdelningar med vana av att hantera syra-basrubbningar.

Sammanfattning

  • Gå igenom anamnes och sjukhistoria, läkemedelsanamnes och läkemedelslista och åtgärda uppenbara utlösande orsaker
  • Uteslut kompensatorisk rubbning sekundärt till kronisk hypoventilation (högt pCO2, lågt/normalt pH)
  • Bedöm volymstatus, blodtryck och kontrollera fullständigt elektrolytstatus.
  • Vanligaste orsaken är kloridbristtillstånd, som utlösts av  läkemedel (tiazid- och loopdiuretika, antibiotika) förlust av magsyra (v-sond, kräkningar).
  • Om uppenbar utlösande orsak föreslås att prova behandling med isoton koksaltinfusion (0,9% NaCl) och korrigera elektrolyter (hypokalemi, hypomagnesemi)
  • De flesta lindriga och okomplicerade metabola alkaloser svarar på given behandling med NaCl och elektrolytkorrigering.
  • Om ej tydligt utlösande orsak eller svårkorrigerad alkalos kontrollera urinklorider och urin-PH och överväg därefter ovanligare orsaker som genetiska eller endokrina rubbningar (se flödesschema).
  • Räkna anjongap och vid skillnad mellan uppmätt HCO3 och förväntat HCO3, gå vidare och kontrollera deltagap och deltaratio för att inte missa en kombinerad metabol rubbning.

Disclaimer

Innehållet i den här artikeln ska ses som åsikter från personerna bakom blodgas.se i allmänhet och författaren till inlägget i synnerhet. Innehållet ska ses som inspiration till fördjupad kunskap och diskussion och ska inte likställas vid behandlingsriktlinjer eller råd.

Referenser

  1. Soifer JT, Kim HT. Approach to Metabolic Alkalosis. Emerg Med Clin N Am 32 (2014) 453–463
  2. https://emedicine.medscape.com/article/243160-overview
  3. Galla JH. Metabolic Alkalosis. J Am SocNephrol 11: 369–375, 2000.
  4. Hodgkin JE, Soeprono FF, Chan DM. Incidence of metabolic alkalemia in hospitalized patients. Crit Care Med 1980;8:725–32.
  5. Anderson LE, Henrich WL. Alkalemia associated morbidity and mortality in medical and surgical patients. South Med J 1987;80:729–33.
  6. Tamara da Silva Cunha Ita Pfeferman Heilberg. Bartter syndrome: causes, diagnosis, and treatment. International Journal of Nephrology and Renovascular Disease 2018:11 291–301
  7. Piperacillin-tazobactam-induced hypokalemia and metabolic alkalosis. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195141/
  8. KreuÈ S, Jazrawi A, Miller J, Baigi A, Chew M (2017) Alkalosis in Critically Ill Patients with Severe Sepsis and Septic Shock. PLoS ONE 12(1):e0168563. doi:10.1371/journal.pone.0168563
  9. Alkalotics Anonymous: Severe Metabolic Alkalosis. Nicholas Marston. Am J Med 2014. http://dx.doi.org/10.1016/j.amjmed.2013.09.006

Inlägget ”Metabol alkalos – kräkningar och diuretika eller finns det mer att veta?” publicerades först på blodgas.se

Akutsjuksköterskedagarna – Blodgasquiz

Akutsjuksköterskedagarna 2019 – vilken konferens!

Sista dagen höll Jonathan i ett interaktivt blodgasquiz, som nu finns upplagt nedan. De som vann svarade rätt på alla 24 frågor – och var dessutom hiskeligt snabba.

Hur många frågor klarar du?

När behövs en blodgas?

När och varför ska man analysera blodgas? I en av våra guider spaltas detta upp, men här förklaras det mer ingående. Vi börjar med några fall för att illustrera vanliga situationer

Fall 1. En 54årig man med hypertoni och hyperlipidemi söker akuten med feber och låg buksmärta. Du bedömer att den troligaste diagnosen är divertikulit. Patienten är vaken och orienterad. Aktuella parametrar i vila är temp 38.7°, saturation 97% på luft, AF 18/min, puls 93/min och blodtryck 153/87. I lab noteras CRP på 73 och lpk på 11. Behövs blodgas?

Fall 2. En 82årig kvinna vårdas sedan 4 dygn på grund av influensa, sista dygnet har hon försämrats med ökad andnöd och stigande syrgasbehov. Parametrarna är nu temp 35.7°, saturation 93% med 12l O2, AF 28/min, puls ca 130 (ojämn) och blodtryck 134/76. Behövs blodgas? Varför?

Fall 3. En 74årig man med svår KOL blev inlagd med försämring. Blodgas på akuten visade pH 7.46, pCO2 4.7 och pO2 7 utan syrgas. Hon erhöll 1l O2 och övervakas nu med perifer saturation vilken har visat ett värde på 88% sista timmarna. Patienten känner sig något bättre. Behövs en ny blodgas?

Fundera på hur du skulle gjort i respektive fall. Förslag på handläggning finns i slutet på detta inlägg.

Vi kan börja denna genomgång med indikationerna i punktform. Blodgaser är användbara för att förstå:

  1. Andning: För att utvärdera oxygenering, ventilation (pCO2) och syra-basstatus
  2. Åtgärder: Följa upp syrgasadministrering och andningsstöd
  3. Sjukdomar: Bedömning av svårighetsgrad och progression av en sjukdom
  4. Hemodynamik: Bedömning av sviktande hemodynamik som vid chocktillstånd

Detta blir för en ovan användare vagt och svårt att avgränsa när en blodgas inte behövs. Nedan går vi igenom de olika indikationerna och något mer specifikt vilka tillstånd som det kan gälla. Denna text fokuserar på generella indikationer för blodgasanalys och kommer inte att behandla vissa speciella indikationer som under förlossning eller utvärdering inför syrgas i hemmet.

1. Andning

1.1 Oxygenering

Syrgashalten i blodet kan mätas med pulsoximetri perifert (SpO2) och med arteriell blodgas. På blodgasen anges också saturation men betecknas då SaO2. På blodgasen mäts vanligen både SaO2 som % av totalt hemoglobin samt PaO2 dvs det arteriella partialtrycket av syrgasen. Nedan anges tillstånd då arteriell gas krävs för en bra bedömning.

Pulsoximetri med svag signal: pulsoximetri är mindre tillförlitligt vid tillfällen med svag signal (chock, nedsatt perifer cirkulation, kyla) samt om saturationen är under 90% då metodfelet ökar. För tillfällen med svag signal behövs artärgas för att få ett tillförlitligt värde på saturation (SaO2) eller syrgashalt (PaO2). Däremot vid en saturationskurva med god signal som visar 85% kan artärgas tas för att validera att 85% stämmer. Om överensstämmelsen är god mellan artärgas och perifer saturation kan därefter SpO2 följas så länge som saturationen inte sjunker ytterligare.

Chock: vid chock avspeglar en perifert tagen venös gas allt mindre kroppens generella syra-basstatus och man bör därför ta arteriell gas. Extremfallet av detta är såklart hjärtstopp.

Akut (svår) dyspné: akuta tillstånd där man inte vill chansa kring vare sig den venösa gasens tillförlitlighet eller perifer saturation. Hur svår och hur akut avgörs bäst av en erfaren kliniker, här finns ingen forskning. Vid osäkerhet, oro för patient och inför diskussion med annan vårdinstans bör prov tas

Specifika intoxikationer: kolmonoxid, methemoglobinemi. Vid båda tillstånden ockuperas en viss % av hemoglobinet av respektive ämne och kan då ej användas för syrgastransport. Kolmonoxid kan misstänkas vid andningspåverkan och medvetandeförlust efter exponering för brandrök, gasolkök och liknande. Methemoglobinemi är ovanligt. Vid dessa fall kan ej pulsoximetri användas för att värdera oxygenering.

1.2 Ventilation (pCO2)

Först ska man betona att det är endast en liten del av patientens förmåga till en effektiv ventilation som undersöks med koldioxidhalten. Samma 5.3kPa (som är normalt) kan fås med en lugn och oansträngd andning eller en andningsfrekvens på 40 hos en trött patient som använder auxillära andningsmuskler. Ett högt värde indikerar dock alltid ett problem.

Koldioxid bör kontrolleras om man misstänker att det finns risk för koldioxidretention enligt samma kriterier som Akut svår dyspné ovan. Här är typfallet en KOL-exacerbation med en uttröttad patient kanske några dagar in i exacerbationen och med små resurser. Koldioxidretention ses även efter en period med högt andningsarbete på grund av pneumoni och liknande. Observera att (relativ) koldioxidretention även kan ses vid svår metabol acidos och är då ett allvarligt tecken, patienten orkar helt enkelt inte kompensera den metabola rubbningen och behöver vanligen andningsstöd förutom sedvanlig behandling av grundproblemet.

1.3 Syra-basstatus

Många sjukdomar och tillstånd kan ge störningar i syra-basstatus, de vanligare förutom respiratoriska rubbningar är ketoacidoser, njursjukdom och elektrolytstörningar som vid ileus eller diuretikabehandling. För många av dessa behövs syra-basstatus för att följa behandling. Flera intoxikationer är förenade med syra-basrubbningar varför blodgas oftast tas även innan typen av intoxikation är känd för att snabbt identifiera farligare tillstånd. Laktatstegring är förenat med sämre prognos vid många sjukdomstillstånd och mäts därför som prognostisk markör och för att följa förlopp. Syra-basstatus påverkar koagulation och är därför en viktig analys bl.a vid trauma och stora blödningar. Vid chocktillstånd ger syra-basstatus en indikation om perifer cirkulation.

2. Följa upp syrgasadministrering och andningsstöd

Lågt syrgasbehov: För uppföljning av litet behov av syrgas (ca 0-3l) gäller samma regler som ovan, dvs om pulsoximetri är tillförlitligt behövs ej artärgas. I praktiken fungerar sällan målvärden av PaO2 om det samtidigt finns en perifer saturation att ta ställning till då detta mäts kontinuerligt till skillnad från artärgasen.

Högre syrgasbehov (≥5l/min, FiO2 > 30-35%) bör kontrolleras med artärgas, dels då en saturation på 97% inte anger om PaO2 är normalt på 12 eller suprafysiologiskt på 35. Dels för att förhållandet mellan syrgasbehov och PaO2 kan användas för att bedöma graden av respiratorisk påverkan.

Andningsstöd av olika typ följs med blodgas för att se deras effekt på pH och pCO2, särskilt om patienten har haft respiratorisk acidos som anledning till andningsstöd. Hur ofta det bör ske och exakt när beror på. Man bör försöka skilja på om man vill utvärdera en förändring av inställningarna, och då ta provet 15-30 min senare, eller om man vill följa ett stabilt förlopp då prov kan tas glest (1-3ggr/d).

3. Bedömning av svårighetsgrad och progression av sjukdom

Många tillstånd som ger syra-basstörningar behöver inte följas särskilt ofta, ex njursvikt vanligen dagligen vid akuta problem och vid stabil sjukdom några gånger per år. De tillstånd som kräver oftare uppföljning är diabetisk ketoacidos/DKA (1/h initialt), vissa intoxikationer (ex acetylsalicylsyra, etylenglykol) samt alla oklara tillstånd med mer betydande syra-basrubbningar. Innan frekvensen av prov bestäms bör man fundera på i vilken utsträckning nästa prov kommer förändra handläggning. Vid DKA styrs exempelvis insulin, kaliumtillsats och eventuell iv glukos med prov varför det är rimligt att mäta ofta. Däremot vid njursvikt (utan allvarlig elektrolytrubbning) är åtgärderna mer långsamma och därför är det meningslöst att ta många prov.

Laktatstegring vid sepsis är ett separat avsnitt och där går åsikterna isär gällande värdet av ”laktatclearence” som brukar definieras som en sänkning med >10%. Det är prognostiskt ogynnsamt med ökande värden, men frågan är vilka åtgärder som är aktuella bara utifrån ett stabilt laktat på ex 4.3mmol/l. Detta kommer diskuteras senare i ett separat inlägg.

4. Chocktillstånd

Se under 1.1, 1.3 samt direkt ovan för laktat. Generellt är både acidos och laktatstegring tecken på chock, men chock kan både förekomma utan dessa och det finns många andra tillstånd som ger samma blodgasbild. Här är alltså kopplingen till den kliniska bilden viktig. Det är dock rimligt att initialt ta en blodgas om chock misstänkes. Ytterligare parametrar som undersökts är skillnaden mellan venös och arteriellt koldioxid.

Venös gas?

Kortfattat finns det få ”egna” indikationer för att ta en venös gas; centralvenös saturation är den man snabbast tänker på men då tas den ur CVK eller PA-kateter. Den stora frågan är när man slipper ta arteriell, och alltså kan ta en venös gas samtidigt som andra venösa prover för att spara patienten nålstick (och tid för dig). Punktat nedan är några sådan tillstånd

  • Önskar bara syra-basstatus: främst exemplet är diabetisk ketoacidos där det finns bra belägg. Detta gäller även metabola tillstånd som uremi, laktatstegring samt de elektrolytstörningar som är associerade med metabola rubbningar (ex hypokalemi)
  • KOL-exacerbation: om pulsoximetri är tillförlitlig (se ovan) kan venös gas oftast vara tillräcklig som grund för handläggning. Är då pCO2 venöst <6kPa är koldioxidretention uteslutet. Vid högre värde kan oftast beslut om vilken typ av behandling som krävs göras utan arteriell gas då kliniska parametrar också är viktiga (grad av andningspåverkan, etc).
  • Vid andra tillstånd finns oftast inte forskning och det är upp till en enskild kliniker att extrapolera från ovanstående. Rimligen kan man göra detta för att ex utesluta koldioxidretention, men samma patient kan ju ha andra anledningar till att en arteriell gas ska tas. Exempelvis att man vill följa det arteriella värdet över tid.

Återkoppling på fallen

  1. Man med divertikulit. Blodgas tillför troligen inget. Patienten har i beskrivningen ovan inga tecken på chock.
  2. Kvinna med influensa. Arteriell blodgas bör tas omedelbart. Både för utvärdering av oxygenering då patienten har ett högt syrgasbehov samt för ventilation då det finns risk för uttröttning och koldioxidretention efter några dagars högt andningsarbete. Det finns även en risk för chock genom exempelvis en sepsisutveckling.
  3. Man med KOL. Blodgas tillför inte så mycket just nu då patienten känner sig förbättrad, har en adekvat saturation med litet syrgasbehov och hade på akuten inga tecken på koldioxidretention. Det är rimligt att kontrollera venös eller arteriell gas nästa dag om den kliniska bilden inte förbättrats.

Sammanfattning

  • Blodgaser är viktiga för utvärdering av oxygenering, ventilation och syra-basstatus
  • Vid högre syrgasbehov samt vid andningsstöd är blodgaser en viktig del i uppföljning, särskilt om patienten försämras eller inte förbättras
  • Chocktillstånd och intoxikationer där kolmonoxid misstänks bör utvärderas med arteriell blodgas
  • Metabola tillstånd med risk för syra-basstörning bör utvärderas, hur ofta provet tas beror på grundtillstånd
  • Venös blodgas kan ersätta arteriell om man bara önskar utvärdera metabola rubbningar eller utesluta koldioxidretention vid KOL

Inlägget ”När behövs en blodgas?” publicerades först på blodgas.se

Få våra tips och tricks!

Vi kommer att lägga upp våra bästa föreläsningar, quiz och tips på hemsidan. Skriv upp dig för att få allt skickat till dig – helt gratis!

(Självfallet kommer vi inte dela dina uppgifter med någon annan, och man kan när som helst ta bort sig från listan. Och det kommer nog inte bli mer än ett utskick i kvartalet.)

Akutsjuksköterskedagarna 2019

 

Stort tack till alla som deltog i blodgasföreläsningen på Akutsjuksköterskedagarna 2019! Det var en intensiv och spännande genomgång av syrabasrubbningar och basal blodgastolkning.

Här är en sammanfattande åhörarkopia:

Och quizet från föreläsningen hittar du här!